欧美大片aaaa一级毛片-欧美大片a一级毛片视频-欧美大片一区-欧美大片毛片aaa免费看-亚洲精品影院-亚洲精品影院久久久久久

您好!歡迎訪問保定米奇生物科技有限公司網站!
全國服務咨詢熱線:

19801430409

當前位置:首頁 > 技術文章 > 植物轉錄因子研究策略及方法

植物轉錄因子研究策略及方法

更新時間:2023-10-13      點擊次數:1970

植物轉錄因子研究

      轉錄因子(TF)是一類具有特殊結構的蛋白質,也稱為反式作用因子。通過與靶基因啟動子區域的順式作用元件特異性結合,行使調控基因表達的功能。典型的轉錄因子一般具有4個功能結構域:DNA結合區(DNA-binding domain,DBD)、轉錄調控區(transcription regulation domain,TRD)、寡聚化位點區(oligomerization site,OS)以及核定位信號區(nuclear localization signal,NLS)。這些結構域決定了轉錄因子的功能和特性(Liu et al., 1999)。轉錄因子結合位點(TFBS)是與轉錄因子結合的靶基因上游5'端特殊的一段DNA序列,也稱為DNA結合基序(motif)。一個轉錄因子往往同時調控若干個基因,在不同基因上TFBS具有一定的保守性,但又具有一定的差異。

      植物轉錄因子在植物的生長發育、形態建成、響應外界環境變化等方面起重要的調節作用,而且在植物性狀改良和新品種培育方面具有廣闊的應用前景Yang et al., 2004。因此,近些年來,轉錄因子在植物基因轉錄調控研究領域備受大家的關注,是研究的熱點之一。

1.jpg

植物通過信號轉導途徑響應非生物和生物脅迫(Hrmova et al., 2021)

     植物受到非生物脅迫(例如:干旱、熱、鹽、冷)和生物脅迫(例如:病毒、細菌、真菌、昆蟲)后,通過細胞膜表面的受體感知脅迫信號,進而激活信號轉導。信號級聯反應(例如:第二信使激活、激酶活化、磷酸化/去磷酸化)的發生,調控多種轉錄因子及應激反應基因的轉錄與表達,從而介導脅迫的耐受和抵抗,并恢復細胞和組織穩態。

2.jpg

植物非生物脅迫(干旱和鹽信號通路中轉錄因子作為錄調控網絡關鍵組成部分的示意圖(Hussain et al., 2021)

植物轉錄因子可分為多個家族(例如:AP2/ERF、bHLH、bZIP、HD-Zip、MYB、NAC、WRKY、MADS等),且數量繁多,功能多樣,增加了轉錄因子的研究難度。


植物轉錄因子研究策略及常用的實驗方法

在此,我們總結了植物轉錄因子的研究策略和方法希望可以為模式植物及非模式植物中,轉錄因子對基因的轉錄調控機制研究增磚添瓦。

    藍景科信專注為國內高等院校和研究機構提供創新的技術解決方案和應用工具。尤其是對于分子間相互作用的研究,例如:DNA親和純化測序(DAP-seq),該技術可高通量地檢測轉錄因子及DNA結合蛋白在基因組上的結合位點,鑒定下游靶基因。我們擁有100+物種,1000+轉錄因子的DAP-seq實驗經驗。在DAP-seq技術服務領域我們的客戶有中國科學院植物所、遺傳發育所、動物所、中國農科院畜牧所、棉花所、果樹所、基因組所、中國林科院、中國農業大學、浙江大學等幾十所高等院校或科研機構。而且,使用該技術已助力客戶在許多期刊成功發表文章,例如:Molecular Plant,The Plant Cell,Plant Physiology,Plant Biotechnology Journal,Journal of Integrative Plant Biology,New Phytologist等。


下面,我們將結合具體的文章案例對植物轉錄因子研究套路進行剖析和解讀。

文章案例(一)

文章題目:Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid

發表期刊:The Plant Cell

1. 篩選轉錄因子OsPIL15

根據前期研究基礎,找到一個轉錄因子水稻PIF家族成員OsPIL15。該轉錄因子參與水稻氣孔運動的調節機制尚不清楚。

2. 研究OsPIL15的基因功能

通過OsPIL15過表達和敲除突變體株系的表型觀察、蒸騰作用相關生理指標檢測分析、突變體回補實驗、不同光照處理后的生理指標檢測分析,得出結論OsPIL15通過促進氣孔閉合進而負調節蒸騰作用,并且OsPIL15參與了紅光/遠紅光誘導的水稻氣孔孔徑調節。進一步采用ABA處理后表型觀察、生理指標檢測分析、內源ABA含量測定,明確了OsPIL15參與ABA誘導的氣孔關閉過程。

3. 鑒定轉錄因子OsPIL15的下游靶基因

主要實驗:RNA-seq、RT-qPCR、DAP-seq、RNA-seq與DAP-seq聯合分析、雙熒光素酶報告(Dual-Luc)實驗、電泳遷移率測定(EMSA)實驗、OsABI5啟動子序列分析、OsABI5的突變體株系實驗

通過上述一系列實驗,得出實驗結論:OsABI5是OsPIL15調控氣孔運動的直接靶基因。

OsABI5是OsPIL15調控氣孔孔徑的直接靶點

A. DAP-seq鑒定了水稻OsPIL15結合的保守結合基序PBE-box:CACATG;B. 各株系置于不同光照處理下OsABI5的相對表達水平;C和D. Dual-Luc實驗說明OsPIL15誘導了OsABI5的轉錄:C. Dual-Luc載體構建示意圖、D. 相對熒光強度;E和F. EMSA實驗說明OsPIL15與OsABI5啟動子區的PBE-box結合:E. OsABI5啟動子示意圖(紅色標注PBE-box)、F. EMSA結果(黑色箭頭為結合條帶);G-I. 利用水稻OsABI5突變體株系研究OsABI5基因對蒸騰作用的影響:G. 蒸騰速率、H. 氣孔導度、I. 水分利用效率(iWUE)。

4. 鑒定OsPIL15上游調節因子

主要實驗:酵母雙雜交(Y2H)實驗、雙分子熒光互補(BiFC)實驗、Pull down實驗、互作蛋白OsHHO3的突變體株系實驗、雜交雙突變體Ospil15-2 Oshho3-2的株系實驗、Dual-Luc實驗、RT-qPCR實驗

通過上述一系列實驗,得出實驗結論:OsHHO3與OsPIL15結合,協同調節氣孔運動。

OsHHO3與OsPIL15相互結合協同調節氣孔運動

A. Y2H實驗;B. BiFC實驗;C. Pull down實驗;D-H. 利用水稻OsHHO3敲除突變體株系研究OsHHO3基因對蒸騰作用的影響:D. 蒸騰速率、E. 氣孔導度、F. iWUE、G. 三種不同開度氣孔的百分比、H. 氣孔空隙面積(SPA);I-K. 比較單突變體Ospil15-2Oshho3-2和雜交雙突變體Ospil15-2 Oshho3-2之間蒸騰作用的差異:I. 蒸騰速率、J. 氣孔導度、K. iWUE;L. 比較OsABI5基因在各突變體株系中的相對表達水平;M和N. Dual-Luc實驗:M. Dual-Luc載體構建示意圖、N. 相對熒光強度。

5. 研究玉米中同源基因的功能(拓展轉錄因子研究廣度)

通過EMS誘變獲得玉米突變體株系,隨后開展一系列表型觀察和生理指標檢測分析,最終得出結論:ZmPIF1ZmPIF3具有調節玉米氣孔開度的功能,因此PIFs介導的氣孔開度調控機制在植物中可能是保守的。

6. 構建OsPIL15調控的分子機制模型

該研究發現了水稻轉錄因子OsPIL15與OsHHO3相互作用,促進水稻OsABI5的轉錄。OsPIL15通過與OsABI5啟動子的PBE-box基序結合調控氣孔開度。此外,與OsPIL15同源的玉米PIF家族基因ZmPIF1ZmPIF3也負調控玉米的氣孔開度,表明PIF調控的氣孔運動在植物中可能是保守的。

OsPIL15通過協調紅光和ABA信號調節氣孔運動的機制模式圖

在晚上phy轉化為不活躍的Pr形式,并定位于細胞質,導致OsPIL15在細胞核中積累。OsPIL15通過與OsABI5啟動子結合,增強OsABI5的轉錄,促進水稻氣孔關閉,降低蒸騰作用。此外,OsHHO3與OsPIL15相互作用,促進OsPIL15與OsABI5啟動子的結合。在白天紅光促進phys轉化為活躍的Pfr形式,并遷移到細胞核中,于是OsPIL15蛋白被細胞核中的Pfr降解,不再誘導OsABI5的表達,從而促進水稻氣孔開放,提高蒸騰作用。

文章小結:該研究揭示了PIFs在紅光介導的氣孔運動中發揮作用的分子機制,并證明了PIFs可以通過協調紅光和ABA信號傳導來調節氣孔開度。


文章案例(二)

文章題目:Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus

發表期刊:Plant Physiology

1. 篩選轉錄因子PtoWRKY68

對不同自然種群的300份中國白楊材料進行干旱相關性狀的全基因組關聯分析(GWAS),篩選到顯著相關的SNP位點及其關聯基因PtoWRKY68(WRKY家族轉錄因子)。基因表達水平分析和轉基因擬南芥株系實驗表明PtoWRKY68是一個植物耐旱性的正調控因子。

2. 研究PtoWRKY68等位基因的功能

基于PtoWRKY68基因的序列變異分析,將毛白楊分為兩個單倍型類群:PtoWRKY68hap1PtoWRKY68hap2。通過等位基因頻率調查分析、基因表達水平檢測、干旱相關性狀分析、轉基因擬南芥株系實驗,發現PtoWRKY68hap1(耐旱等位基因)的耐旱性強于PtoWRKY68hap2(干旱敏感等位基因),而且二者對干旱脅迫響應的差異并不是由于PtoWRKY68等位基因表達水平的差異所致,可能與等位基因變異對干旱脅迫的不同響應機制有關。

3. 鑒定轉錄因子PtoWRKY68的下游靶基因

主要實驗:RNA-seq、共表達網絡分析、DAP-seq、RNA-seq與DAP-seq聯合分析、Dual-Luc實驗、EMSA實驗、楊樹種群及轉基因擬南芥株系中的靶基因表達水平分析、ABA敏感實驗、干旱脅迫相關生理指標檢測

基于上述一系列實驗分析,鑒定了PtoWRKY68hap1和PtoWRKY68hap2的結合基序(分別是W1-box、W2-box)及其靶基因(PtoDTX49.1、PtoABF2.1PtoRD26.1)。PtoWRKY68介導了靶基因在干旱脅迫下的轉錄調控,且相比于PtoWRKY68hap2,PtoWRKY68hap1對靶基因啟動子具有更高的親和力。干旱脅迫下PtoWRKY68hap1通過增強干旱脅迫信號通路和ABA信號通路以及減少ABA外排,從而增加細胞中ABA積累,最終增強植物的耐旱性。

DAP-seq鑒定PtoWRKY68等位基因的靶基因

A. 水分充足及干旱脅迫下的基因共表達網絡模塊,在重疊基因中包含了PtoWRKY68;B和C. DAP-seq分析PtoWRKY68hap1(B)和PtoWRKY68hap2(C)的peaks在基因組上的分布;D和E. PtoWRKY68hap1(D)和PtoWRKY68hap2(E)的結合基序分別是W1-box和W2-box;F和G. PtoWRKY68hap1(F)和PtoWRKY68hap2(G)的靶基因富集的KEGG通路;H. Venn圖顯示有3個重疊基因;I-K. 箱型圖展示3個靶基因PtoRD26.1、PtoDTX49.1、PtoABF2.1的相對表達水平(FPKM值)。

4. 鑒定PtoWRKY68上游調節因子

主要實驗:數量性狀位點(eQTL)分析、EMSA實驗、Dual-Luc實驗

eQTL分析發現PtoSVP.3受干旱脅迫誘導表達,其表達水平與PtoWRKY68呈正相關。EMSA和Dual-Luc實驗驗證了PtoSVP.3通過與PtoWRKY68啟動子區域的CArG基序結合,促進PtoWRKY68的表達。

5. 構建PtoWRKY68調控的分子機制模型

提出了PtoWRKY68調控楊樹耐旱性的分子機制模型PtoSVP.3-PtoWRKY68-PtoDTX49.1/PtoABF2.1/PtoRD26.1。為應對干旱脅迫,PtoSVP.3正向調控PtoWRKY68,PtoWRKY68等位基因通過誘導PtoRD26.1PtoABF2.1的表達以及抑制PtoDTX49.1的表達,進而調控ABA信號傳導和積累來增強楊樹的耐旱性。

PtoWRKY68調控楊樹耐旱性的分子機制模型

在干旱脅迫下,PtoWRKY68等位基因受PtoSVP.3的正向調控,PtoWRKY68hap1(上圖)等位基因變異增強了對PtoRD26.1和PtoABF2.1的結合和激活,抑制PtoDTX49.1,從而調節ABA外排和信號轉導來獲得耐旱性。相比于PtoWRKY68hap1,PtoWRKY68hap2(下圖)對下游靶點具有較低的結合親和力和激活能力。因此,具有PtoWRKY68hap1等位基因的楊樹材料其抗旱性優于具有PtoWRKY68hap2等位基因的楊樹材料。

文章小結:該研究提出了PtoWRKY68調控楊樹耐旱性的分子機制。該調控模塊的鑒定為深入了解楊樹耐旱性的遺傳基礎提供了新見解,并為利用分子育種技術開發耐旱樹木新品種提供了潛在的靶點。


文章案例(三)

文章題目:Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple

發表期刊:Horticultural Plant Journal

1. 篩選轉錄因子MdWRKY115

基于蘋果基因組數據,分析了WRKY基因家族成員,并克隆了蘋果基因MdWRKY115。序列比對和系統進化分析表明MdWRKY115是第Ⅲ組WRKY家族轉錄因子。

2. 驗證轉錄因子MdWRKY115

qRT-PCR結果表明干旱和滲透脅迫下MdWRKY115表達上調。GUS活性分析表明在滲透脅迫下MdWRKY115的啟動子活性明顯增強。亞細胞定位分析發現MdWRKY115定位于細胞核。轉錄激活分析結果證明了MdWRKY115是一個轉錄激活因子。

3. 研究MdWRKY115的基因功能

轉基因株系的表型分析表明,在擬南芥幼苗和蘋果愈傷組織中過表達MdWRKY115,顯著提高了它們對干旱和滲透脅迫的耐受性。

4. 鑒定轉錄因子MdWRKY115的下游靶基因

主要實驗:DAP-seq、EMSA實驗、轉基因蘋果愈傷組織中靶基因表達水平檢測

DAP-seq鑒定了MdWRKY115的結合元件是W-box基序(核心序列TTGAC)以及與脅迫相關的靶基因MdRD22。EMSA驗證了MdWRKY115與MdRD22啟動子的特異性結合。對轉基因蘋果愈傷組織檢測發現,過表達MdWRKY115能夠促進MdRD22的表達。因此,MdWRKY115通過直接與MdRD22的啟動子結合,調控其表達。

MdWRKY115直接結合MdRD22啟動子,調控表達

A. DAP-seq鑒定了MdWRKY115的DNA結合基序W-box;B.EMSA驗證了MdWRKY115與靶基因MdRD22啟動子的結合;C.轉基因蘋果愈傷組織中MdRD22的表達差異說明MdWRKY115的過表達促進了MdRD22的表達上調。

5. 構建MdWRKY115調控的分子機制模型

該研究鑒定了蘋果中與干旱和滲透脅迫耐受性相關的轉錄因子MdWRKY115。MdWRKY115通過與MdRD22啟動子結合,調控MdRD22的表達,提高了轉基因擬南芥和蘋果愈傷組織對干旱和滲透脅迫的耐受性。

文章小結:該研究提出了MdWRKY115通過調控MdRD22的表達增強蘋果對干旱和滲透脅迫耐受性的分子機制,這對利用分子遺傳策略培育耐旱植物新品種具有重要意義。


參考文獻:

Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem. 1999 Jun;262(2):247-57. doi: 10.1046/j.1432-1327.1999.00349.x.

Yang ZR, Wang XC, Li XM, Yang CD. [Transcription factors in higher plant]. Yi Chuan. 2004 May;26(3):403-8. Chinese.

Hrmova M, Hussain SS. Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci. 2021 May 26;22(11):5662. doi: 10.3390/ijms22115662.

Hussain Q, Asim M, Zhang R, Khan R, Farooq S, Wu J. Transcription Factors Interact with ABA through Gene Expression and Signaling Pathways to Mitigate Drought and Salinity Stress. Biomolecules. 2021 Aug 5;11(8):1159. doi: 10.3390/biom11081159.

以下參考文獻中的DAP-seq技術支持由藍景科信提供。

Li Q, Zhou L, Chen Y, Xiao N, Zhang D, Zhang M, Wang W, Zhang C, Zhang A, Li H, Chen J, Gao Y. Phytochrome interacting factor regulates stomatal aperture by coordinating red light and abscisic acid. Plant Cell. 2022. 34: 4293-4312. doi: 10.1093/plcell/koac244.

Fang Y, Wang D, Xiao L, Quan M, Qi W, Song F, Zhou J, Liu X, Qin S, Du Q, Liu Q, El-Kassaby YA, Zhang D. Allelic variation in transcription factor PtoWRKY68 contributes to drought tolerance in Populus. Plant Physiol. 2023 May 29:kiad315. doi: 10.1093/plphys/kiad315.

Dong Q, Tian Y, Zhang X, Duan D, Zhang H, Yang K, Jia P, Luan H, Guo S, Qi G, Mao K, Ma F, Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple, Horticultural Plant Journal. doi: 10.1016/j.hpj.2023.05.005.


保定米奇生物科技有限公司
地址:保定市惠陽街369號保定中關村創新基地研發中心15層1508室
郵箱:info@michlab.cn
傳真:
關注我們
歡迎您關注我們的微信公眾號了解更多信息:
歡迎您關注我們的微信公眾號
了解更多信息
你懂的国产精品| 香蕉视频亚洲一级| 成人免费观看的视频黄页| 精品久久久久久影院免费| 欧美爱爱网| 成人免费一级毛片在线播放视频| 国产91丝袜高跟系列| 亚洲精品影院一区二区| 国产美女在线观看| 久久国产影视免费精品| 尤物视频网站在线观看| 麻豆系列 在线视频| 国产原创视频在线| 成人a大片在线观看| 国产亚洲精品aaa大片| 99久久精品国产麻豆| 美女免费毛片| 青青久热| 中文字幕97| 国产一区二区精品尤物| 日本伦理黄色大片在线观看网站| 99久久精品国产国产毛片| 国产极品精频在线观看| 国产伦精品一区二区三区无广告 | 国产精品自拍一区| 国产91精品系列在线观看| 在线观看成人网| 成人影院一区二区三区| 欧美大片a一级毛片视频| 黄视频网站免费观看| 毛片高清| 成人av在线播放| 久久精品欧美一区二区| 国产成人精品综合| 日韩av片免费播放| 韩国毛片| 日本在线不卡视频| 欧美另类videosbestsex高清 | 一级毛片看真人在线视频| 亚洲第一色在线| 九九九网站| 九九干| 亚洲天堂免费观看| 久久99中文字幕| 久久久成人网| a级毛片免费观看网站| 国产高清在线精品一区二区| 欧美国产日韩一区二区三区| 免费国产一级特黄aa大片在线| 久久久久久久免费视频| 深夜做爰性大片中文| 日本免费乱理伦片在线观看2018| 久久精品欧美一区二区| 韩国三级视频网站| 天天做日日干| 精品国产一区二区三区精东影业| 999久久狠狠免费精品| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 日本在线不卡视频| 国产91精品露脸国语对白| 免费一级片在线| 色综合久久天天综合绕观看| 黄色短视频网站| 国产一区二区精品尤物| 久久成人性色生活片| 免费毛片播放| 香蕉视频久久| 亚欧成人乱码一区二区| 韩国三级视频网站| 你懂的国产精品| 欧美国产日韩在线| 欧美另类videosbestsex久久| 欧美另类videosbestsex高清| 国产成人精品综合| 精品国产一级毛片| a级毛片免费观看网站| 天天做人人爱夜夜爽2020毛片| 一级毛片视频免费| 成人免费福利片在线观看| 黄视频网站在线看| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 亚洲女人国产香蕉久久精品| 国产麻豆精品免费密入口| 日本伦理黄色大片在线观看网站| 国产高清视频免费观看| 欧美激情一区二区三区在线| 欧美激情一区二区三区中文字幕| 国产麻豆精品免费视频| 日韩专区亚洲综合久久| 韩国毛片| 国产不卡在线看| 久草免费资源| 高清一级做a爱过程不卡视频| 久久99中文字幕| 国产网站在线| 青青青草影院| 欧美一区二区三区在线观看| 精品久久久久久中文字幕一区| 九九久久国产精品大片| 你懂的日韩| 久久精品大片| 999精品视频在线| 香蕉视频一级| 亚欧乱色一区二区三区| 一级女性全黄生活片免费| 亚洲精品永久一区| 亚洲天堂免费| 黄视频网站免费看| 国产精品自拍在线观看| 日韩在线观看免费完整版视频| 国产91素人搭讪系列天堂| 国产视频网站在线观看| 国产亚洲精品成人a在线| 韩国三级香港三级日本三级| 欧美激情一区二区三区在线| 韩国三级一区| 国产国语对白一级毛片| 尤物视频网站在线| 国产激情一区二区三区| 91麻豆精品国产片在线观看 | 高清一级做a爱过程不卡视频| 日本特黄特色aaa大片免费| 麻豆午夜视频| 国产成人精品综合| 韩国毛片免费| 成人免费观看视频| 毛片成人永久免费视频| a级黄色毛片免费播放视频| 高清一级片| 欧美α片无限看在线观看免费| 999精品在线| 国产一级强片在线观看| 精品国产一区二区三区免费 | 台湾毛片| 日韩av片免费播放| 黄色福利片| 久久精品成人一区二区三区| 欧美大片a一级毛片视频| 日韩一级黄色大片| 日本免费区| 可以在线看黄的网站| 国产伦精品一区三区视频| 精品久久久久久中文字幕一区| 韩国三级一区| 国产视频一区二区在线播放| 99色播| 黄视频网站免费观看| 午夜激情视频在线观看| 亚洲精品中文一区不卡| 国产91精品一区二区| 精品毛片视频| 久草免费资源| 成人免费观看的视频黄页| 日韩在线观看视频黄| 精品在线观看国产| 亚洲wwwwww| 99久久精品费精品国产一区二区| 99久久网站| 中文字幕一区二区三区精彩视频| 日韩女人做爰大片| 美女免费毛片| 一级女性大黄生活片免费| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 成人免费高清视频| 成人高清视频免费观看| 欧美一级视频高清片| 欧美激情影院| 国产成人啪精品| 可以免费看污视频的网站| 可以免费看污视频的网站| 黄视频网站在线观看| 99色视频在线观看| 国产不卡高清在线观看视频 | 欧美一级视频高清片| 国产成+人+综合+亚洲不卡| 国产一区二区精品尤物| 精品在线观看国产| 午夜在线影院| 九九久久99综合一区二区| 免费的黄色小视频| 国产一区二区精品久| 国产一区二区精品尤物| 香蕉视频亚洲一级| 亚欧成人乱码一区二区| 国产精品1024永久免费视频| 国产一区二区精品尤物| 可以免费在线看黄的网站| 四虎影视久久| 天天色成人网| 精品国产香蕉伊思人在线又爽又黄| 一级毛片看真人在线视频| 欧美国产日韩久久久| 国产成人精品综合| 黄视频网站在线观看| 二级特黄绝大片免费视频大片| 国产一区二区福利久久| 免费的黄色小视频| 国产美女在线一区二区三区| 成人高清视频在线观看| 国产高清视频免费观看|